CDF/D0: summary of expectations in long term Guillelmo Gomez-Ceballos (M.I.T.) - Prospects **VERY** preliminary (and in too few days!!!) - D0's reach will be comparable to CDF's for most of the items - Luminosity: - Very unpredictable (2-4 fb⁻¹) - We will use 2 and 3.5 fb⁻¹ as benchmarks - Difficult to know if it is possible to use the same B triggers at higher luminosity - Trigger, reconstruction and tagging performance: - We expect to make several improvements (see my talk yesterday) - "Minimal" correction factor ~2.2 ## $B_s \rightarrow \Box^+\Box^-(\text{limits also in } B_d)$: - D0: 1.3 10⁻⁸ (2 fb⁻¹) and 0.6 10⁻⁸ (4 fb⁻¹) - CDF: - Optimization analysis for 0.5 fb⁻¹ (~0.5 10⁻⁶), it is expected better performance - ~ 10^{-7} 10^{-8} (2 fb⁻¹) at 95% C.L. ## B_s mixing: - •D0: 2 fb⁻¹, $\Box m_s = 15$ and $\Box_t = 150$ fs - Please, be careful with these numbers! - Single muon trigger: - •Bs \rightarrow D_s \square X (3.5 \square) - •Bs \rightarrow D_s e X (3.5 \square) - •Bs \rightarrow D_s \square (2.2 \square), \square in the other side - Dimuon trigger: - Bs \rightarrow D_s \square X (3.0 \square), \square in the other side - CDF: see my talk yesterday - $\square m_s = 15, 2 \square \text{ limit with } 0.5 \text{ fb}^{-1}$ - \Box m_s = 18, discovery with 1.7 fb⁻¹ - $\square m_s = 24$, discovery with 3.2 fb⁻¹ • $$\square$$ and \square using B \rightarrow hh: $A_{CP} = A_{CP}^{dir} \cos(\square mt) + A_{CP}^{mix} \sin(\square mt)$ - Studies are in progress - A lot of activity in these channels | Mede | Yield 2 fb ¹ | Yield 3.5 fb ¹ | |---------------------------------------|-------------------------|---------------------------| | $B_d \to K T_c$ | 6700 | 11,725 | | $\mathcal{B}_{\mathscr{E}} o \imath$ | 1770 | 3097 | | $B_s \to KK$ | 4040 | 7070 | | $B_* \to K\pi$ | 1070 | 1870 | - \square using \square : no competitive results due to \square^0 in the final state - ☐ using ☐☐: no studied yet - Yields for B $\rightarrow \square\square K^*$: ~500 events for 2 fb⁻¹ - \square/\square (\square_s) using J/ \square : uncertainty ~ 0.07 (0.055) for 2 (3.5) fb⁻¹ - \Box using \Box →DK and B_s → D_s K: - Cabibbo suppressed modes not measured yet, but included in the fits for $[] \rightarrow D[]$ and $B_s \rightarrow D_s[]$ BR measurements (see my talk yesterday) - Expected yields (assuming BR($\square \rightarrow D\square$) / BR($\square \rightarrow DK$)~8%): | Mode | Yield in 2 fb ^{−1} | Yield in 3.5 fb−1 | |---|-----------------------------|-------------------| | $h^{\perp} \to U^0 \pi, U^0 \to K \pi$ | 48,000 | 84,000 | | $\mathcal{B}^{\pm} \to \overline{\mathcal{D}}^0 K, \overline{\mathcal{D}}^0 \to K\pi$ | 3990 | 6980 | | $b^{\perp} \to \overline{D}^{\circ} K, (\overline{D}^{\circ} \to KK + \overline{D}^{\circ} \to \pi\pi)$ | 520 | 910 | | $B_1 \to D_1 r_n D_2 \to \infty$ | 3200 | 5600 | | $B_s \to B_s K, B_s \to \phi T.$ | 256 | 44 8 |